Ham Radio In The Internet Age

Even if you are relatively young, you can probably think back on what TV was like when you were a kid and then realize that TV today is completely different. Most people watch on-demand. Saturday morning cartoons are gone, and high-definition digital signals are the norm. Many of those changes are a direct result of the Internet, which, of course, changed just about everything. Ham radio is no different. The ham radio of today has only a hazy resemblance to the ham radio of the past. I should know. I’ve been a ham for 47 years.

You know the meme about “what people think I do?” You could easily do that for ham radio operators. (Oh wait, of course, someone has done it.) The perception that hams are using antique equipment and talking about their health problems all day is a stereotype. There are many hams, and while some of them use old gear and some of them might be a little obsessed with their doctor visits, that’s true for any group. It turns out there is no “typical” ham, but modern tech, globalization, and the Internet have all changed the hobby no matter what part of it you enjoy.

Radios

One of the biggest changes in the hobby has been in the radio end. Hams tend to use two kinds of gear: HF and VHF/UHF (that’s high frequency, very high frequency, and ultra-high frequency). HF gear is made to talk over long distances, while VHF/UHF gear is for talking around town. It used to be that a new radio was a luxury that many hams couldn’t afford. You made do with surplus gear or used equipment.

Globalization has made radios much less expensive, while technological advances have made them vastly more capable. It wasn’t long ago that a handy-talkie (what normal folks would call a walkie-talkie) would be a large purchase and not have many features. Import radios are now sophisticated, often using SDR technology, and so cheap that they are practically disposable. They are so cheap now that many hams have multiples that they issue to other hams during public service events.

Continue reading “Ham Radio In The Internet Age”

Silent Antenna Tuning

If you want to deliver the maximum power to a load — say from a transmitter to an antenna — then both the source and the load need to have the same impedance. In much of the radio communication world, that impedance happens to be 50Ω. But in the real world, your antenna may not give you quite the match you hoped for. For that reason, many hams use antenna tuners. This is especially important for modern radios that tend to fold their power output back if the mismatch is too great to protect their circuitry from high voltage spikes. But a tuner has to be adjusted, and often, you have to put a signal out over the air to make the adjustments to match your antenna to your transmitter.

There are several common designs of antenna tuners, but they all rely on some set of adjustable capacitors and inductors. The operator keys the transmitter and adjusts the knobs looking for a dip in the SWR reading. Once you know the settings for a particular frequency, you can probably just dial it back in later, but if you change frequency by too much or your antenna changes, you may have to retune.

It is polite to turn down the power as much as possible, but to make the measurements, you have to send some signal out the antenna. Or do you?

Several methods have been used in the past to adjust antennas, ranging from grid dip meters to antenna analyzers. Of course, these instruments also send a signal to the antenna, but usually, they are tiny signals, unlike the main transmitter, which may have trouble going below a watt or even five watts.

New Gear

However, a recent piece of gear can make this task almost trivial: the vector network analyzer (VNA). Ok, so the VNA isn’t really that new, but until recently, they were quite expensive and unusual. Now, you can pick one up for nearly nothing in the form of the NanoVNA.

The VNA is, of course, a little transmitter that typically has a wide range coupled with a power detector. The transmitter can sweep a band, and the device can determine how much power goes forward and backward into the device under test. That allows it to calculate the SWR easily, among other parameters.

Continue reading “Silent Antenna Tuning”

Classic Heathkit OL-1 Scope Gets Some TLC

These days, not only are oscilloscopes very common, but even a cheap instrument today would have been the envy of the world’s greatest labs not that long ago. But back in the day, the home experimenter basically had two choices: buy a surplus scope that a big company was getting rid of or build a Heathkit. [Radiotvphononut] bought an old Heathkit OL-1 scope at an estate sale and set about putting it back in service.

If you are used to a modern scope, you’ll be amazed at how simple a scope like this can be. A handful of tubes and a CRT is the bulk of it. Of course, the OL-1 is an analog scope with a 400 kHz bandwidth. It did, however, have two channels, which was a rarity at the time.

The OL-1 was sold for a few years up to 1956 and cost about $30 as a kit. There was a version with a larger screen (five whole inches) that cost an extra $40, so you can bet there were more OL-1s sold since $40 was a big ask in 1956. While they don’t seem like much today, you were probably the envy of the ham club in 1956 when you lugged this in for show and tell.

This is a long video, but it pays off at the end. Overall, this was a more capable scope than the $66 scope from 10 years earlier we looked at. Did you ever wonder how people visualized signals before the CRT? Funny, we did too.

Continue reading “Classic Heathkit OL-1 Scope Gets Some TLC”

Heathkit Signal Generator Gets An Update

[DTSS_Smudge] correctly intuits that if you are interested in an old Heathkit signal generator, you probably already know how to solder. So, in a recent video, he focused on the components he decided to update for safety and other reasons. Meanwhile, we get treated to a nice teardown of this iconic piece of test gear.

If you didn’t grow up in the 1960s, it seems strange that the device has a polarized line cord with one end connected to the chassis. But that used to be quite common, just like kids didn’t wear helmets on bikes in those days.

A lot of TVs were “hot chassis” back then, too. We were always taught to touch the chassis with the back of your hand first. That way, if you get a shock, the associated muscle contraction will pull your hand away from the electricity. Touching it normally will make you grip the offending chassis hard, and you probably won’t be able to let go until someone kindly pulls the plug or a fuse blows.

These signal generators were very common back in the day. A lot of Heathkit gear was very serviceable and more affordable than the commercial alternatives. In 1970, these cost about $32 as a kit or $60 already built. While $32 doesn’t sound like much, it is equivalent to $260 today, so not an impulse buy.

Some of the parts are simply irreplaceable. The variable capacitor would be tough to source since it is a special type. The coils would also be tough to find replacements, although you might have luck rewinding them if it were necessary.

We are spoiled today with so many cheap quality instruments available. However, there was something satisfying about building your own gear and it certainly helped if you ever had to fix it.

There was so much Heathkit gear around that even though they’ve been gone for years, you still see quite a few units in use. Not all of their gear had tubes, but some of our favorite ones did.

Give Your SMD Components A Lift

When you are troubleshooting, it is sometimes useful to disconnect a part of your circuit to see what happens. If your new PCB isn’t perfect, you might also need to add some extra wires or components — not that any of us will ever admit to doing that, of course. When ICs were in sockets, it was easy to do that. [MrSolderFix] shows his technique for lifting pins on SMD devices in the video below.

He doesn’t use anything exotic beyond a microscope. Just flux, a simple iron, and a scalpel blade. Oh, and very steady hands. The idea is to heat the joint, gently lift the pin with the blade, and wick away excess solder. If you do it right, you’ll be able to put the pin back down where it belongs later. He makes the sensible suggestion of covering the pad with a bit of tape if you want to be sure not to accidentally short it during testing. Or, you can bend the pin all the way back if you know you won’t want to restore it to its original position.

Continue reading “Give Your SMD Components A Lift”

For Desalination, Follow The Sun

It’s easy to use electricity — solar-generated or otherwise — to desalinate water. However, traditional systems require a steady source of power. Since solar panels don’t always produce electricity, these methods require some way to store or acquire power when the solar cells are in the dark or shaded. But MIT engineers have a fresh idea for solar-powered desalination plants: modify the workload to account for the amount of solar energy available.

This isn’t just a theory. They’ve tested community-sized prototypes in New Mexico for six months. The systems are made especially for desalinating brackish groundwater, which is accessible to more people than seawater. The goal is to bring potable water to areas where water supplies are challenging without requiring external power or batteries.

The process used is known as “flexible batch electrodialysis” and differs from the more common reverse osmosis method. Reverse osmosis, however, requires a steady power source as it uses pressure to pump water through a membrane. Electrodialysis is amenable to power fluctuations, and a model-based controller determines the optimal settings for the amount of energy available.

There are other ways to use the sun to remove salt from water. MIT has dabbled in that process, too, at a variety of different scales.

Nuclear Tomb Must Survive

It is hard to imagine that much we built today will be used ten years from now, much less in a hundred. It is hard to make things that last through the ages, which is why we are fascinated with things like ancient pyramids in Mexico, Egypt, and China. However, even the oldest Egyptian pyramid is only about 5,000 years old. [Mark Piesing] at the BBC visited a site that is supposed to lock up nuclear waste for 100,000 years.

This particular project is in France, but there are apparently dozens of similar projects around the world. Locating these nuclear tombs is tricky. They need to be in a geologically stable area that won’t contaminate water. They also prefer areas already depleted of resources to lessen the chance someone will be digging nearby in the far future. You also need people to agree to have these facilities in their communities, which is probably the most difficult thing to find.

Continue reading “Nuclear Tomb Must Survive”