Solar Planes Are Hard

A regular comment we see on electric aircraft is to “just add solar panels to the wings.” [James] from Project Air has been working on just such a solar plane, and as he shows in the video after the break, it is not a trivial challenge.

A solar RC plane has several difficult engineering challenges masquerading as one. First, you need a solid, efficient airframe with enough surface area for solar panels. Then, you need a reliable, lightweight, and efficient solar charging system and, finally, a well-tuned autopilot to compensate for a human pilot’s limited endurance and attention span.

In part one of this project, a fault in the electrical system caused a catastrophe so James started by benching all the electricals. He discovered the MPPT controller had a battery cutoff feature that he was unaware of, which likely caused the crash. His solution was to connect the solar panels to the input of a 16.7 V voltage regulator—just under the fully charged voltage of a 4S LiPo battery— and wire the ESC, control electronics, and battery in parallel to the output. This should keep the battery charged as long as the motor doesn’t consume too much power.

After rebuilding the airframe and flight testing without the solar system, [James] found the foam wing spars were not up to the task, so he added aluminum L-sections for stiffness. The solar panels and charging system were next, followed by more bench tests. On the test flight, it turned out the aircraft was now underpowered and struggled to gain altitude thanks to the added weight of the solar system. With sluggish control responses,[James] eventually lost sight of it behind some trees, which led to a flat spin and unplanned landing.

Fortunately, the aircraft didn’t sustain any damage, but [James] plans to redesign it anyway to reduce the weight and make it work with the existing power system.

We’ve seen several solar planes from [rctestflight] and meticulously engineered versions from [Bearospace Industrues]. If long flight times is primarily what you are after, you can always ditch the panels and  use a big battery for 10+ hour flights.

Continue reading “Solar Planes Are Hard”

Solar Plane Might Be Able To Last Through The Night

“Just add solar panels to the wings” is a popular suggestion for improving the flight times of fixed-wing drones. However, the reality is not so simple, and it’s easy to hurt rather than help flight times with the added weight and complexity. The team at [Bearospace Industries] has been working on the challenge for the while, and their Solar Dragon aircraft recently had a very successful test flight, producing about 50% more power than it was consuming.

Instead of just trying to slap solar panels to an existing plane, an airframe should ideally be designed from the ground up as a balancing act between a range of factors. These include weight, efficiency, flight envelope, structural integrity, and maximum surface area for solar panels. All the considerations are discussed by [Bearospace] in an excellent in-depth video, which is an indispensable resource for anyone planning to build a solar plane.

[Bearospace] put all the theory into practice on Solar Dragon, which incorporates over 250 W of high-efficiency Maxeon C60 solar cells on the wing, tail, and triangular fuselage. The cells were wired to match their maximum power point voltage as closely as possible to the plane’s 3S lithium-ion battery pack, enabling the solar cells to charge the battery directly. To prevent overcharging, a solid state relay was used to disconnect the solar cells from the battery as required.

The batteries maintained the same average state of charge during the entire one-hour late morning flight, even though the panels were only connected 65% of the time. The team expects they might be able to get even better performance from the cells with a good MPPT charger, which will be required for less than ideal solar conditions.

Solar Dragon has a much larger payload capacity than was used during the test flight, more than enough for an MPPT charger and a significantly larger battery. With this and a long list of other planned improvements, it might be possible for the Solar Dragon to charge up during the day and fly throughout the night on battery power alone. One interesting potential approach mentioned is to also store energy in the form of altitude during the day, and use the aircraft’s slow sink rate to minimize battery usage at night.

Solar planes come up every few months on Hackaday, with [rctestflight] being one of the usual suspects. You also don’t need solar panels for long flight times, as [Matthew Heiskell] proved with a 10-hour 45 minute flight on battery power alone.

Continue reading “Solar Plane Might Be Able To Last Through The Night”

3D Printed VTOL Craft Can Land And Recharge Itself, And Team Up With Other Drones

For a long time fixed wing VTOL drones were tricky to work with, but with the availability of open source flight control and autopilot software this has changed. To make experimentation even easier, [Stephen Carlson] and other researchers from the RoboWork Lab at the University of Nevada created the MiniHawk, a 3D printed VTOL aircraft for use a test bed for various research projects.

Some of these project include creating a longer wingspan aircraft by combining multiple MiniHawks in mid-flight with magnetic wing-tip mounts, or “migratory behaviors“. The latter is a rather interesting idea, which involves letting the craft land in any suitable location, and recharging using wing mounted solar panels before continuing with the next leg of the mission. With this technique, the MiniHawk could operate on mission almost indefinitely without human intervention. This is a departure from some other solar planes we’ve seen, which attempt to recharge while flying, or even ditch batteries completely, which limits operation to sunny weather conditions.

The design is open source, with all the relevant information and files available on GitHub. This looks like a fun craft even if you don’t plan on doing research with it, and [Stephen] also created an FPV specific canopy cover.

Continue reading “3D Printed VTOL Craft Can Land And Recharge Itself, And Team Up With Other Drones”

Solar Plane Is Like One Big Flying Solar Panel

Solar-powered plane concepts typically focus on high-efficiency glider-type designs, so as to make the best possible use of the limited power available from the sun. [rctestflight] wanted to try a different school of thought, instead building a relatively inefficient plane that nonetheless packed a huge amount of solar panels on board.

The plane consisted of a pizza-box style design, with a simple foam rectangular wing that was absolutely covered in solar panels. The plane was controlled with an off-the-shelf autopilot, and fitted with cheap, no-brand MPPT modules to handle charging the batteries. The plane faced difficulties in flight, most often with stability, which led to the autopilot getting the plane lost on one occasion. However, one flight was achieved with a full one hour and thirty minute duration, indicating the solar panels were helping to extend flight times beyond what was capable with batteries alone.

Further research on the ground showed that the cheap MPPT modules were wasting power, and there was more to be had. A better MPPT module was subbed in and showed that the panels could generate up to 5 amps under good conditions, while the plane only needed roughly 4.2 amps to fly. This would allow for indefinite flight in sunny conditions, though probably would not allow enough energy to be banked to fly 24 hours round the clock due to the lack of power at night.

We’ve followed [rctestflight]’s solar plane experiments for a while now, and can’t wait to see the next iteration. Video after the break.

Continue reading “Solar Plane Is Like One Big Flying Solar Panel”

Soaring With The Sun: 4 Years Of Solar RC Planes

Many of us have projects that end up spanning multiple years and multiple iterations, and gets revisited every time inspiration strikes and you’ve forgotten just how much work and frustration the previous round was. For [Daniel Riley] AKA [rctestflight] that project is a solar powered RC plane which to date spans 4 years, 4 versions and 13 videos. It is a treasure trove of information collected through hard experience, covering carbon fibre construction techniques, solar power management and the challenges of testing in the real world, among others.

Solar Plane V1 had a 9.5 ft / 2.9 m carbon fibre skeleton wing, covered with transparent film, with the fragile monocrystaline solar cells mounted inside the wing. V1 experienced multiple crashes which shattered all the solar cells, until [Daniel] discovered that the wing flexed under aileron input. It also did not have any form of solar charge control. V2 added a second wing spar to a slightly longer 9.83 ft / 3 m wing, which allowed for more solar cells.

Solar Plane V3 was upgraded to use a single hexagonal spar to save weight while still keeping stiff, and the solar cells were more durable and efficient. [Daniel] did a lot of testing to find an optimal solar charging set-up and found that using the solar array to charge the batteries directly in a well-balanced system actually works equally well or better than an MPPT charge controller.

V4 is a departure from the complicated carbon fibre design, and uses a simple foam board flying wing with a stepped KF airfoil instead. The craft is much smaller with only a 6 ft / 1.83 m wingspan. It performed exceptionally well, keeping the battery fully charged during the entire flight, which unfortunately ended in a crash after adjusting the autopilot. [Daniel] suspects the main reasons for the improved performance are higher quality solar panels and the fact that there is no longer film covering the cells.

We look forward to seeing where this project goes! Check out Solar Plane V4 after the break.

Continue reading “Soaring With The Sun: 4 Years Of Solar RC Planes”

Tacking Against The Sun: Flying A Batteryless Solar RC Plane Is Almost Like Sailing

Flying on the power of the sun is definitely not a new idea, but it usually involves a battery between the solar panels and the propulsion system. [ukanduit] decided to lose the battery completely and control the speed of the motor with the output of the solar panels. This leads to some interesting flying characteristics, almost akin to sailing.

When a load tries to draw more current than a solar panel can provide, its output falls dramatically, so [ukanduit] had to take this into account. Using a ATTiny85, he built a MPPT (Maximum Power Point Tracker) unit that connects between the RC receiver and the motor speed controller. It monitors the output of the panels and modulates the speed of the motor accordingly, while ensuring that there is always enough power to run the servos and receiver. The airframe (named the Solar Bear) is a small lightweight flying wing, with a balsa and carbon fibre frame covered with clear film, with the solar cells housed inside the wing. Since the thrust of the motor is directly proportional to how much sunlight hits the top of wings, it requires the pilot to “tack” against the sun and use momentum to quickly get through turns before orienting into the sun again.

If you want to build your own controller, the schematics and software is up on RC Groups. Check out the Solar Bear in action, flown here by [AJWoods].

Continue reading “Tacking Against The Sun: Flying A Batteryless Solar RC Plane Is Almost Like Sailing”

Hackaday Links Column Banner

Hackaday Links: September 3, 2017

The TI-83, TI-84, and TI-86 have been the standard graphing calculators in classrooms for two decades. This is the subject of an xkcd. Now, hopefully, there’s a contender for the throne. Numworks is a graphing calculator that looks like it was designed in at least 2006 (so very modern), and apparently, there’s a huge community behind it.

Juicero is shutting down. No one could have seen this one coming. The Juicero was a $700 press that turned proprietary, DRM’ed juice packs into juice and garbage. It was exquisitely engineered, but it turns out very few people want to spend thousands of dollars per year on DRM’ed juice. Oh, since the Juicero phones home, those $700 presses probably won’t work in the future.

Are you in the Bay area? Do you need test equipment? There’s a gigantic auction happening somewhere around San Jose. [Dave] tipped everyone off to this one, and this auction is pretty freakin’ spectacular. Spectrum analyzers, signal gens, a ‘mega zoom’ oscilloscope, and 4-channel, 500 MHz scopes for $50. There are a thousand lots in this auction. It’s nuts.

Everybody loves PCB art, and [Uri] has a guide for designing custom, functional electronic circuit boards. The toolchain used in this guide is Inkscape and KiCad, with blinky hearts, blinky pandas, and other blinky PCBs.

This one is a little out there even for us. Here’s how you build your own AA batteries. It’s a dozen #10 copper washers, a dozen or so #10 zinc washers, some cardboard, vinegar, salt, and some heat shrink tubing. The assembly of this battery is exactly what you would expect, and yes, it does work. Here’s the thing, though: The very crude tests suggest these batteries have a capacity of about 800-1000 mAh, which is far more than we would expect. Who has a programmable load and wants to do a few experiments? Also, these batteries are ‘rechargeable’ by taking them apart, sanding the crud off each washer, and adding new electrolyte.

[Jan] has made a name for himself stuffing synthesizers into tiny little microcontrollers. The latest project is the Infinity37, a polyphonic synth with MIDI, envelopes, and a whole bunch of cool stuff. Check out the video.

[rctestflight] is building a solar powered aircraft. It’s has a beautiful wing studded with solar panels. The latest flight was four hours, long enough to make piloting a plane through some FatSharks extremely tedious. Future developments will probably include a MPPT charging solution, and probably an autopilot.